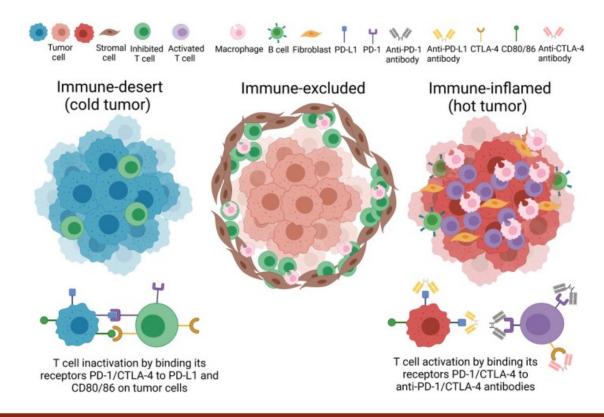
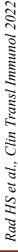
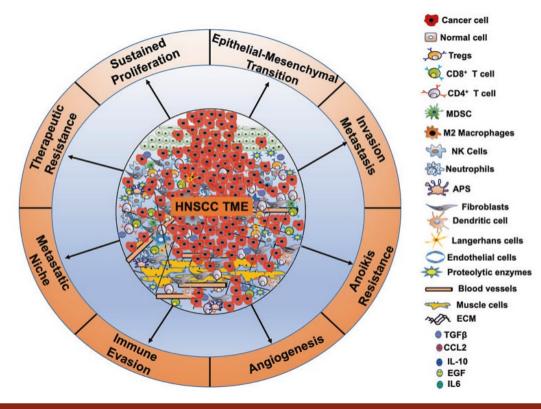


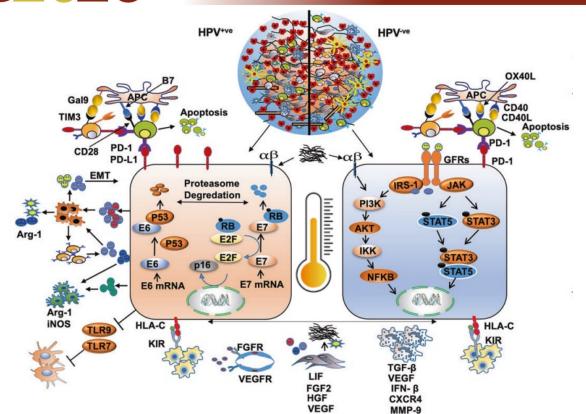
RADIO-IMMUNOTHERAPY FOR HEAD AND NECK CANCER IN 2023: WHERE DO WE STAND?


Stefania Volpe


Istituto Europeo di Oncologia IRCCS, University of Milan; Milan, Italy

COI: None relevant to this presentation

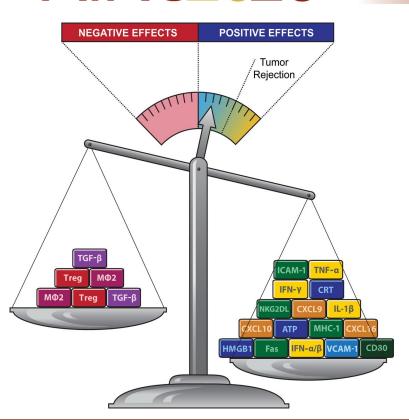


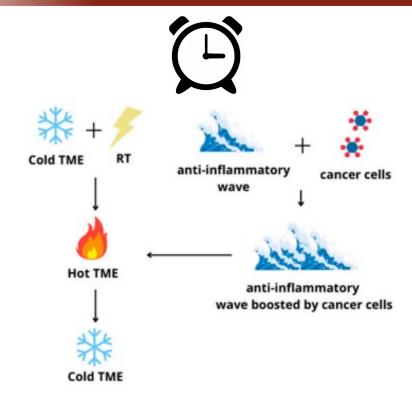


Gene	Cytogenetic location	Mutation type	Function in	Role
TP53	17p13.1		DNA damage	TSG
		Missense		
		Allelic loss		
NOTCH1	90343	Inactivating mutation	Signal transduction pathways	TSG
PIK3CA	3q26.32	mactivating mutation	Signal transduction pathways	
IMSCA	3q20.32	Amplification	oighai d'ansadedon pathways	Oncogene
		Activating mutation		
FAT1	4q35.2			TSG
	•	Inactivating mutation	Cell-cell connection	
		Deletion	Actin dynamics	
HRAS	11p15.5	Activating mutation	Signal transduction pathways	Oncogene
CDKN2A	9p21.3	Loss of function	Cell cycle	TSG
NSD1	5q35.3	Inactivating mutation	Epigenetic regulation	TSG
KMT2D	12q13.12	Inactivating mutation	Epigenetic regulation	TSG

Age
Gender
HLA Polymorphisms
Previous therapies
Concurrent medications
Smoking
Disease site

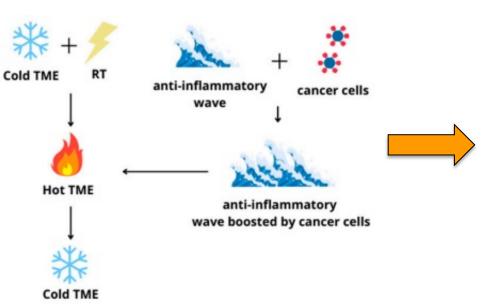
Viral Infections





What about radiotherapy?

Radioterapia Oncologica: l'evoluzione al servizio dei pazient



Iori et al., Curr Oncol, 2022

lori et al., Curr Oncol, 2022

Radiotherapy alone

Radiotherapy + Immunotherapy

Hot TME

Recurrent/ Metastatic Setting

ClinicalTrials.gov Identifier	Title	Phase	Patient Population	Interventional Arms	RT Prescription	Timing of ICI to RT
NCT02684253	Screening Trial of Nivolumab With Image Guided, Stereotactic Body Radiotherapy (SBRT) Versus Nivolumab Alone in Patients With Metastatic Head and Neck Squamous Cell Carcinoma (HNSCC)	II	Metastatic HNSCC, including HPV+	SBRT + nivolumab	27 Gy in 3 fractions, single lesion	Concurrent + maintenance
NCT04830267	The Efficacy of Camrelizumab Plus Stereotactic Body Radiotherapy in R/M HNSCC		Recurrent/metastatic HNSCC, including HPV+	SBRT + Camrelizumab	27 Gy in 3 fractions, single lesion	Neoadjuvant + concurrent + maintenance
NCT04576091	Testing the Addition of an Anti-cancer Drug, BAY 1895344, With Radiation Therapy to the Usual Pembrolizumab Treatment for Recurrent Head and Neck Cancer	1	Recurrent, unresectable HNSCC, including HPV+	SBRT + pembrolizumab + elimusertib	Unspecified dose in 3 factions	Neoadjuvant + concurrent

Zhou and Wang, Biomedicine, 2022

Radioterapia Oncologica: l'evoluzione al servizio dei pazienti

Locally-Advanced Setting: neoadjuvant IT

Meeting Abstract | 2021 ASCO Annual Meeting I

HEAD AND NECK CANCER

Interim analysis of IMMUNEBOOST-HPV: A multicenter, randomized, open label, phase II study evaluating the feasibility, and tolerance of neoadjuvant nivolumab in high-risk HPV driven oropharynx cancer.

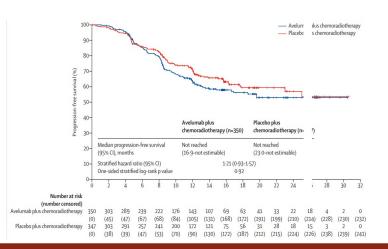
ABSTRACT | VOLUME 33, SUPPLEMENT 7, S840-S841, SEPTEMBER 2022

653O Neoadjuvant nivolumab (N) before chemoradiation (CRT) in high-risk HPV driven oropharynx cancer (OPC) - IMMUNEBOOST-HPV: A multicenter randomized phase II trial

H. Mirghani • C. Even • A. Larive • ... F. Garic • A. Auperin • P. Blanchard • Show all authors

Open Archive • DOI: https://doi.org/10.1016/j.annonc.2022.07.777

- In the EA, four pts received < 200mg/m² Cis (2 kidney failures, 2 ototoxicity)
- One pt had RT-delay (day 38, logistical issues).
- All pts received the planned RT dose
- 14 N-related Adverse Events (AE) occurred in 8 pts including 5 serious AE (ankylosing spondylitis flare-up, hepatic cytolysis, 2 colitis, diabetic ketoacidosis).


Locally-Advanced Setting: concomitant immuno-CRT

Avelumab plus standard-of-care chemoradiotherapy versus chemoradiotherapy alone in patients with locally advanced squamous cell carcinoma of the head and neck: a randomised, double-blind, placebo-controlled, multicentre, phase 3 trial

Nancy Y Lee*, Robert L Ferris*, Amanda Psyrri, Robert I Haddad, Makoto Tahara, Jean Bourhis, Kevin Harringtor

Jin-Ching Lin, Mohammad Abdul Razaq, Maria Margarida Teixeira, Jóssef Lövey, Jerome Chamois, Antonio Rue

Chaosu Hu, Lara A Dunn,
Mikhail Vladimirovich Dvorkin. Steven De Beukelaer. Dmitri Pavlov. Holeer Thurm. Ezra Cohen*

	Events/patients (n/	N)	2-year progression- (95% CI)	free survival rate,%		Hazard ratio (95% CI)*	p value†	
	Avelumab plus chemoradiotherapy	Placebo plus chemoradiotherapy	Avelumab plus chemoradiotherapy	Placebo plus chemoradiotherapy				
Tumour stage‡								
<t4< td=""><td>56/198</td><td>51/193</td><td>57 (47-66)</td><td>58 (45-68)</td><td></td><td>1.17 (0.80-1.71)</td><td>0.87</td></t4<>	56/198	51/193	57 (47-66)	58 (45-68)		1.17 (0.80-1.71)	0.87	
T4	62/152	55/154	48 (38-57)	56 (46-65)	+•-	1.22 (0.85-1.75)		
Nodal stage‡								
N0-N2b	55/184	49/181	59 (48-67)	53 (34-69)	-	1.09 (0.74-1.60)	0.44	
N2c-N3	63/166	57/166	46 (36-56)	56 (46-65)	-	1.33 (0.93-1.91)		
HPV status‡					(10)			
Positive	29/121	26/117	67 (56-76)	72 (61-80)	-	1.26 (0.74-2.15)	0.80	
Negative	89/229	80/230	45 (36-54)	48 (36-59)	→	1-16 (0-86-1-57)		
Site of primary tumour								
Hypopharynx	35/87	26/64	46 (32-59)	53 (39-66)	—	1-07 (0-64-1-78)	0.94	
Larynx	20/59	17/65	49 (31-65)	51 (24-73)		1-38 (0-72-2-65)	0.50	
Oropharynx	42/157	44/169	64 (53-72)	67 (57-74)		1-16 (0-76-1-78)	0.73	
Oral cavity	21/47	19/49	38 (19-56)	33 (13-56)		1.00 (0.54-1.86)		
PD-L1 status at baseline								
PD-L1 low (<25%)	90/249	69/237	52 (43-59)	59 (49-68)	—	1-37 (1-00-1-88)	0.03	
PD-L1 high (≥25%)	10/50	26/73	72 (54-84)	52 (36-65)		0.59 (0.28-1.22)		
All patients (stratified)§	118/350	106/347	53 (46-60)	57 (49-64)	+	1-21 (0-93-1-57)		
All patients (unstratified)	118/350	106/347	53 (46-60)	57 (49-64)	 ●−	1-20 (0-92-1-56)		
				0.25 0.5	1 2 4 8			
				0.25 0.5				
				Favours avelur	mab Favours placebo			

KEY POINTS

- KEYNOTE-412 evaluated concurrent pembrolizumab plus chemoradiation, followed by pembrolizumab maintenance, in locally advanced head and neck squamous cell carcinoma.
- Although numerical trends were observed with pembrolizumab, the benefit fell short of statistical significance.
- Median event-free survival was not reached with pembrolizumab plus chemoradiation and was 46.6 months with chemoradiation alone (HR = 0.83; P = .0429), failing to meet the superiority threshold of .0242.
- The PD-L1 (CPS > 20)—enriched subgroup seemed to derive a higher benefit of the addition of pembrolizumab.

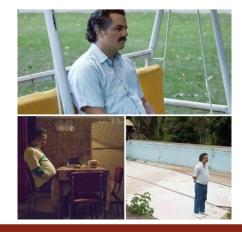
Locally-Advanced Setting: concomitant immuno-CRT

Study of Pembrolizumab (MK-3475) or Placebo With Chemoradiation in Participants With Locally Advanced Head and Neck Squamous Cell Carcinoma (MK-3475-412/KEYNOTE-412)

ClinicalTrials.gov ID NCT03040999

"Pembrolizumab plus chemoradiation was associated with a favorable trend toward improved event-free survival vs placebo plus chemoradiation in patients with locally advanced head and neck squamous cell carcinoma, and PD-L1 expression may be an informative predictive biomarker," said **Jean-Pascal Machiels**, **MD**, **PhD**, Head of the Department of Adult and Pediatric Oncology and Hematology at the Cliniques universitaires Saint-Luc (UCLouvain) in Brussels, who presented the findings at a Presidential Symposium.

Jean-Pascal Machiels, MD, PhD

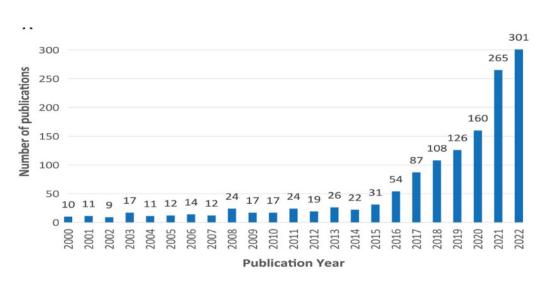

After a median of almost 4 years of follow-up, median event-free survival was not reached with pembrolizumab plus chemoradiation and was 46.6 months with chemoradiation alone (hazard ratio [HR] = 0.83; P = .0429). This difference failed to meet the superiority threshold (efficacy boundary was P = .0242), Dr. Machiels reported.

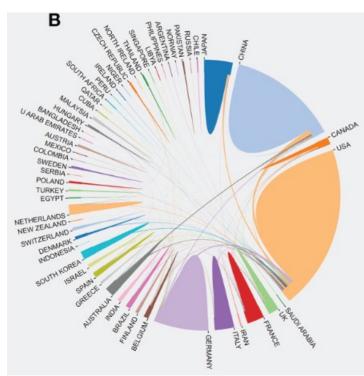
Radioterapia Oncologica:

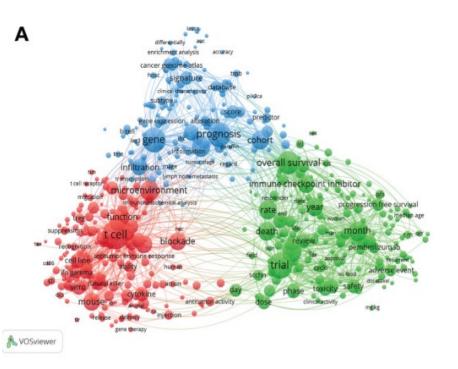
Locally-Advanced Setting: adjuvant IT

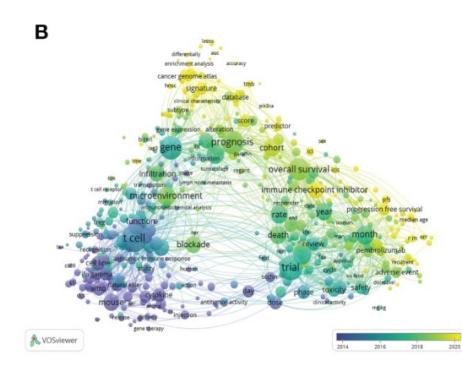
ACTIVE, NOT RECRUITING 1

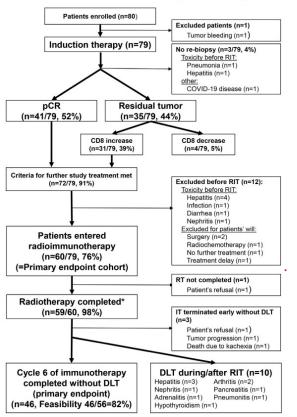
A Study of Atezolizumab (Anti-Pd-L1 Antibody) as Adjuvant Therapy After Definitive Local Therapy in Patients With High-Risk Locally Advanced Squamous Cell Carcinoma of the Head and Neck

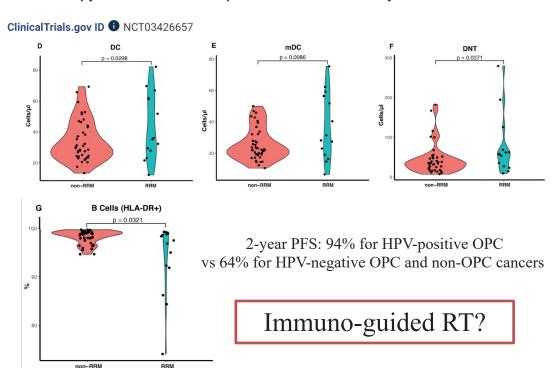




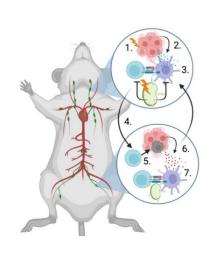

So what?



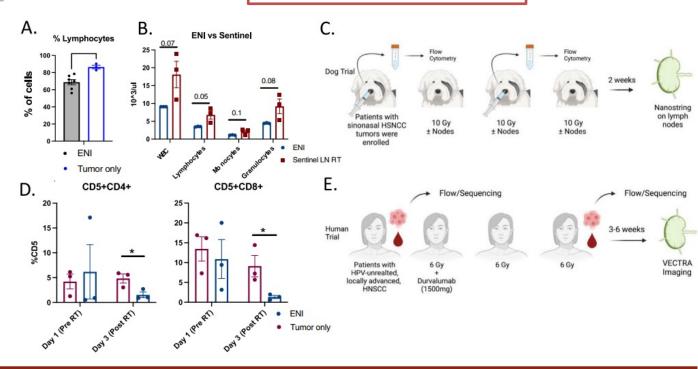

Bibliometric study on the knowledge graph of immunotherapy for head and neck cancer

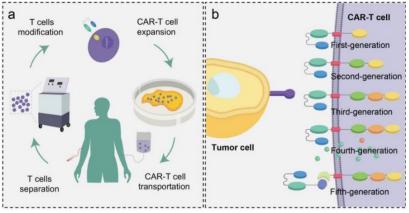


Radiotherapy With Double Checkpoint Blockade of Locally Advanced HNSCC

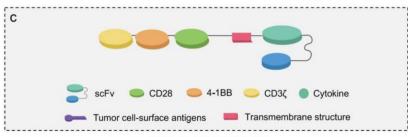


Radioterapia Oncologica: l'evoluzione al servizio dei pazienti


nature communications


https://doi.org/10.1038/s41467-022-34676-w

Elective nodal irradiation mitigates local and systemic immunity generated by combination radiation and immunotherapy in head and neck tumors


Lymphatic-sparing RT?

CAR-T cell synthesis

CAR-T cell generations

Chimeric Antigen Receptor

Other options?

Target	Introduction				
Preclinical study					
HER2		CD28. CD3-ζ/CAd			
EGFR		-			
CD70		4-1BB.CD3-ζ			
MUCI		4-1BB.CD3-ζ/IL-12			
CD44v6		CD28. CD3-ζ			
В7-Н3		-			
CD98 + EGFR		UniCAR-T			
		Clinical trial			
ERBb2/HER2		NCT01818323			
ENDUZ/NENZ	•	NCT03740256			
EpCAM		NCT02915445			
NKG2DL		NCT04107142			
LMP1		NCT02980315			

Thanks for your attention!

stefania.volpe@ieo.it